
Comparing Various Zero-
Knowledge-Proofs

Himanshu Singhal
Abhilash Chauhan

Soumith Reddy Edla
Bhagya Rishiroop Boda

Brandon Pearl

What is Blockchain?
Decentralized, Distributed

ledger to record transactions
and store data.

Privacy Concerns in Blockchains

● Usage of pseudonymous identities
● Linkability of transactions
● Lack of confidentiality

Zero knowledge proofs

The ability to prove honest computation
without revealing inputs

Zero knowledge proofs Example

The ability to prove honest computation
without revealing inputs

Power of Zero knowledge proofs

The ability to prove honest computation
without revealing inputs

● Probability of
incorrect algorithm
when chosen once =
(E-1)/E

● When chosen again,
(E-1)/E * (E-1)/E

Types of ZKPs

❏ Interactive
❏Non-Interactive
❏ Succinct

SNARKs

The Basics

SNARK = Succinct Non-interactive ARguments of Knowledge

BOB

I have the hash!
Prove that you have

the OG value

ALICE

The Basics

ALICE

TRUE / FALSE

The Basics

ALICE

TRUE

BOB

The 3 Algorithms
G takes a 𝝀 and C (a program)

and generates pk & vk

P takes a pk and x (public input)
and generates a proof 𝜋

V takes a 𝜋, x, and pk
and returns true or false

Alice vs Bob using SNARKs

BOB

G P

ALICE BOB

v TRUE
or

FALSE

Evaluating SNARKs

1. Strong security guarantee
2. Privacy
3. Scalability
4. Non-interactive design
5. Cross-chain compatibility

1. Complexity
2. Trust assumptions
3. Setup required
4. Limited flexibility
5. Performance

SNARKs in Action

Bulletproofs - Short like Bullets

Bulletproofs - Introduction

•Bulletproofs were introduced in 2017 by Benedikt Bünz, Jonathan Bootle,
Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.

•Non-interactive zkp protocol with very short proofs and no trusted setup

•Enhance the privacy and security of various applications, such as
cryptocurrencies

Bulletproofs - Problem they solve ?

• Does not require a trusted setup like zk-Snarks.
• Reduces Size & Overall Verification time.

Bulletproofs - Working

Bulletproofs - Working - Pedersen commitment

•Suppose a user wants to commit to a secret value 'v'. The user will generate a random
blinding factor 'r' and compute the commitment 'C' using the following formula:

C = v * G + r * H
•Here, 'v' is the secret value, and 'r' is the random blinding factor. The commitment 'C' is
a point on the elliptic curve.

Bulletproofs - Working - Range Proof

•The prover wants to prove that the secret value 'v' is within a specific range [0, 2^n - 1],
without revealing the actual value. The prover creates a vector 'aL' representing the
binary decomposition of 'v' and computes

'aR' as aR_i = aL_i - 1.

aL = (aL_1, aL_2, ..., aL_n) aR = (aR_1, aR_2, ..., aR_n)

Bulletproofs - Working - Vector Pedersen commitments

•The prover generates Vector Pedersen commitments for the vectors 'aL' and
'aR' using distinct generator points (G_i, H_i) and random blinding factors (rL_i,
rR_i):

A_i = aL_i * G_i + aR_i * H_i + rL_i * P
S_i = aR_i * G_i + (aL_i - aR_i) * H_i + rR_i * P

•Where P is an additional public generator point on the elliptic curve.
•The prover then computes the Vector Pedersen commitments 'A' and 'S' as
the sum of the individual commitments: A = Σ A_i, S = Σ S_i

Bulletproofs - Working - Inner Product Proof

•The prover computes the inner product 't' of the vectors 'aL' and 'aR':

t = <aL, aR>

•The prover then creates commitments 'T1' and 'T2' for the coefficients of 't' using
random blinding factors 'tau1' and 'tau2':

T1 = tau1 * G + t1 * H

T2 = tau2 * G + t2 * H
•Where t = t0 + t1 * x + t2 * x^2, and x is a random challenge generated using the Fiat-
Shamir heuristic.

Bulletproofs - Working - Inner Product Proof

•During each step, the prover reduces the size of the vectors 'aL' and 'aR' by half. The
prover sends commitments for the newly computed vectors, and the verifier responds
with challenges. This process is repeated until a final proof is generated.

•The verifier checks the validity of the inner product proof using the commitments 'A'
and 'S', the provided proof, the Pedersen commitment 'V', and the known value 'c' (in
our case, the secret value 'v').

•The verifier computes the expected inner product of the vectors 'aL' and 'aR' using the
provided proof and the challenges derived during the protocol. If the computed inner
product matches the known value 'c', the verifier accepts the proof as valid, ensuring
that the prover knows the correct vectors 'aL' and 'aR' without revealing the actual
vectors.

Bulletproofs - Applications & Future Use

● Cryptocurrencies
● Online voting
● Decentralized finance
● Healthcare
● Identity management
● Internet of Things

Bulletproofs - Benefits & Limitations

•Improved privacy
•Decentralization
•Efficiency
•Flexibility
•Short proofs
•Scalability
•No trusted setup

•Complexity
•Verification time
•Trust assumptions
•Limited adoption

STARKs

STARK = Succinct Transparent ARguments of Knowledge

● Introduced in 2018 by Eli Ben-Sasson and his fellow team of academics
● GOAL: Generate cryptographic proofs that are both secure and

transparent

STARKs - What makes them different?

1. Transparency: Do not rely on any trusted setup (generation of a set of
public parameters that must be trusted by all parties)

2. Scalable: Generates a proof in less time than other methods
3. Post-quantum security: More resistant to attacks utilizing the power of

quantum computation

STARKs - How do they work?
1. Generate a proof

a. Prover constructs a polynomial representation of the computation and
evaluates at random points

b. Prover constructs a low-degree polynomial from the original, whose
evaluation is easier to compute

2. Verify the proof
a. Verifier evaluates low-degree polynomial at random points, and checks

that output matches using Fast Fourier Transform

STARKs - Transparency and Scalability

● Transparency is achieved by making the choice of random points used in
the proof generation and verification publicly verifiable

● Scalability is achieved by recursively breaking down the original proof
into sub-proofs, and eventually combined back into a single proof using
interpolation
○ Scales well with large computations
○ Utilizes parallel processing

STARKs - Starks In Action

● Eli Ben-Sasson cofound StarkWare, a company focused on developing
and commercializing STARK technology
○ Crypto gaming company, Immutable, use StarkWare for mass-minting of NFTs
○ DeFi platform DeversiFi uses StarkEx to settle trades at better prices, decrease minimum

order-sizes, and keep trade history private and secure

STARKs - Limitations

● Complexity: STARKs use complex math and the implementation of them
can be difficult and may require a high amount of resources

● Proof size: Proofs can potentially be large, due to them being designed
for high levels of security and designed to handle highly complex
computations

How do they stack up against each other?

When to use what

Related work
Earliest usage of ZKP

● Graph isomorphism: Use of ZKP to prove graph isomorphism
○ “The knowledge complexity of Interactive systems”

● Interactive ZKP: Electronic voting , Digital signatures ,Multi party Computation
○ “Protocols for secure computations”

● Zcash: Privacy focused cryptocurrency to enable anonymous transactions
○ “Zerocoin:Anonymous Distributed E-cash from bitcoin ”

Related work

Advancements in ZKP:

● Succinct ZKP (Bulletproofs , STARKs)

● Interactive ZKP (NIZKP)

● Scalable ZKP (Sonic and Aurora)

● Privacy preserving ZKP (zk-SNARKs, zk-STARKs) etc

Conclusion

● Optimal option for a ZKP depends on the application's requirements
● Earlier ZKP protocols have limitations

○ Long proof size
○ High computational power

● SNARKs, STARKs and Bulletproofs overcome these challenges
● Future Scope:

○ Vulnerable to Quantum attacks (Early Stages)
○ Interoperability between Block Chains

